TriHorn-Net: A model for accurate depth-based 3D hand pose estimation
نویسندگان
چکیده
منابع مشابه
V2V-PoseNet: Voxel-to-Voxel Prediction Network for Accurate 3D Hand and Human Pose Estimation from a Single Depth Map
Most of the existing deep learning-based methods for 3D hand and human pose estimation from a single depth map are based on a common framework that takes a 2D depth map and directly regresses the 3D coordinates of keypoints, such as hand or human body joints, via 2D convolutional neural networks (CNNs). The first weakness of this approach is the presence of perspective distortion in the 2D dept...
متن کاملDense 3D Regression for Hand Pose Estimation
We present a simple and effective method for 3D hand pose estimation from a single depth frame. As opposed to previous state-of-the-art methods based on holistic 3D regression, our method works on dense pixel-wise estimation. This is achieved by careful design choices in pose parameterization, which leverages both 2D and 3D properties of depth map. Specifically, we decompose the pose parameters...
متن کاملModel-Based Deep Hand Pose Estimation
Previous learning based hand pose estimation methods does not fully exploit the prior information in hand model geometry. Instead, they usually rely a separate model fitting step to generate valid hand poses. Such a post processing is inconvenient and sub-optimal. In this work, we propose a model based deep learning approach that adopts a forward kinematics based layer to ensure the geometric v...
متن کاملDepth-based hand pose estimation: methods, data, and challenges
Hand pose estimation has matured rapidly in recent years. The introduction of commodity depth sensors and a multitude of practical applications have spurred new advances. We provide an extensive analysis of the state-of-the-art, focusing on hand pose estimation from a single depth frame. To do so, we have implemented a considerable number of systems, and will release all software and evaluation...
متن کاملDepth-Based 3D Hand Pose Estimation: From Current Achievements to Future Goals
In this paper, we strive to answer two questions: What is the current state of 3D hand pose estimation? And, what are the next challenges that need to be tackled? Following the successful Hands In the Million Challenge (HIM2017), we investigate 11 state-of-the-art methods on three tasks: single frame 3D pose estimation, 3D hand tracking, and hand pose estimation during object interaction. We an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Expert Systems With Applications
سال: 2023
ISSN: ['1873-6793', '0957-4174']
DOI: https://doi.org/10.1016/j.eswa.2023.119922